ok
Direktori : /proc/thread-self/root/proc/thread-self/root/opt/alt/ruby18/lib64/ruby/1.8/bigdecimal/ |
Current File : //proc/thread-self/root/proc/thread-self/root/opt/alt/ruby18/lib64/ruby/1.8/bigdecimal/math.rb |
# #-- # Contents: # sqrt(x, prec) # sin (x, prec) # cos (x, prec) # atan(x, prec) Note: |x|<1, x=0.9999 may not converge. # exp (x, prec) # log (x, prec) # PI (prec) # E (prec) == exp(1.0,prec) # # where: # x ... BigDecimal number to be computed. # |x| must be small enough to get convergence. # prec ... Number of digits to be obtained. #++ # # Provides mathematical functions. # # Example: # # require "bigdecimal" # require "bigdecimal/math" # # include BigMath # # a = BigDecimal((PI(100)/2).to_s) # puts sin(a,100) # -> 0.10000000000000000000......E1 # module BigMath # Computes the square root of x to the specified number of digits of # precision. # # BigDecimal.new('2').sqrt(16).to_s # -> "0.14142135623730950488016887242096975E1" # def sqrt(x,prec) x.sqrt(prec) end # Computes the sine of x to the specified number of digits of precision. # # If x is infinite or NaN, returns NaN. def sin(x, prec) raise ArgumentError, "Zero or negative precision for sin" if prec <= 0 return BigDecimal("NaN") if x.infinite? || x.nan? n = prec + BigDecimal.double_fig one = BigDecimal("1") two = BigDecimal("2") x1 = x x2 = x.mult(x,n) sign = 1 y = x d = y i = one z = one while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0) m = BigDecimal.double_fig if m < BigDecimal.double_fig sign = -sign x1 = x2.mult(x1,n) i += two z *= (i-one) * i d = sign * x1.div(z,m) y += d end y end # Computes the cosine of x to the specified number of digits of precision. # # If x is infinite or NaN, returns NaN. def cos(x, prec) raise ArgumentError, "Zero or negative precision for cos" if prec <= 0 return BigDecimal("NaN") if x.infinite? || x.nan? n = prec + BigDecimal.double_fig one = BigDecimal("1") two = BigDecimal("2") x1 = one x2 = x.mult(x,n) sign = 1 y = one d = y i = BigDecimal("0") z = one while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0) m = BigDecimal.double_fig if m < BigDecimal.double_fig sign = -sign x1 = x2.mult(x1,n) i += two z *= (i-one) * i d = sign * x1.div(z,m) y += d end y end # Computes the arctangent of x to the specified number of digits of precision. # # If x is infinite or NaN, returns NaN. # Raises an argument error if x > 1. def atan(x, prec) raise ArgumentError, "Zero or negative precision for atan" if prec <= 0 return BigDecimal("NaN") if x.infinite? || x.nan? raise ArgumentError, "x.abs must be less than 1.0" if x.abs>=1 n = prec + BigDecimal.double_fig y = x d = y t = x r = BigDecimal("3") x2 = x.mult(x,n) while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0) m = BigDecimal.double_fig if m < BigDecimal.double_fig t = -t.mult(x2,n) d = t.div(r,m) y += d r += 2 end y end # Computes the value of e (the base of natural logarithms) raised to the # power of x, to the specified number of digits of precision. # # If x is infinite or NaN, returns NaN. # # BigMath::exp(BigDecimal.new('1'), 10).to_s # -> "0.271828182845904523536028752390026306410273E1" def exp(x, prec) raise ArgumentError, "Zero or negative precision for exp" if prec <= 0 return BigDecimal("NaN") if x.infinite? || x.nan? n = prec + BigDecimal.double_fig one = BigDecimal("1") x1 = one y = one d = y z = one i = 0 while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0) m = BigDecimal.double_fig if m < BigDecimal.double_fig x1 = x1.mult(x,n) i += 1 z *= i d = x1.div(z,m) y += d end y end # Computes the natural logarithm of x to the specified number of digits # of precision. # # Returns x if x is infinite or NaN. # def log(x, prec) raise ArgumentError, "Zero or negative argument for log" if x <= 0 || prec <= 0 return x if x.infinite? || x.nan? one = BigDecimal("1") two = BigDecimal("2") n = prec + BigDecimal.double_fig x = (x - one).div(x + one,n) x2 = x.mult(x,n) y = x d = y i = one while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0) m = BigDecimal.double_fig if m < BigDecimal.double_fig x = x2.mult(x,n) i += two d = x.div(i,m) y += d end y*two end # Computes the value of pi to the specified number of digits of precision. def PI(prec) raise ArgumentError, "Zero or negative argument for PI" if prec <= 0 n = prec + BigDecimal.double_fig zero = BigDecimal("0") one = BigDecimal("1") two = BigDecimal("2") m25 = BigDecimal("-0.04") m57121 = BigDecimal("-57121") pi = zero d = one k = one w = one t = BigDecimal("-80") while d.nonzero? && ((m = n - (pi.exponent - d.exponent).abs) > 0) m = BigDecimal.double_fig if m < BigDecimal.double_fig t = t*m25 d = t.div(k,m) k = k+two pi = pi + d end d = one k = one w = one t = BigDecimal("956") while d.nonzero? && ((m = n - (pi.exponent - d.exponent).abs) > 0) m = BigDecimal.double_fig if m < BigDecimal.double_fig t = t.div(m57121,n) d = t.div(k,m) pi = pi + d k = k+two end pi end # Computes e (the base of natural logarithms) to the specified number of # digits of precision. def E(prec) raise ArgumentError, "Zero or negative precision for E" if prec <= 0 n = prec + BigDecimal.double_fig one = BigDecimal("1") y = one d = y z = one i = 0 while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0) m = BigDecimal.double_fig if m < BigDecimal.double_fig i += 1 z *= i d = one.div(z,m) y += d end y end end